

# PVsyst - Simulation report

# **Grid-Connected System**

Project: 100 kW test project

Variant: Test simulation (100 kW, Azerbaijan)

No 3D scene defined, no shadings

System power: 100 kWp

Saatlı - Azerbaijan



Variant: Test simulation (100 kW, Azerbaijan)

PVsyst V7.2.4

VC4, Simulation date: 31/07/24 11:51 with v7.2.4

## **Project summary**

Geographical Site Situation Project settings

SaatlıLatitude39.92 °NAlbedo0.20AzerbaijanLongitude48.37 °E

Longitude 48.37 °E

Altitude -14 m

Time zone UTC+4

Time zone U

Meteo data

Saatlı

Meteonorm 8.0 (1986-2000), Sat=100% - Synthetic

## System summary

Grid-Connected System No 3D scene defined, no shadings

PV Field OrientationNear ShadingsUser's needsFixed planeNo ShadingsUnlimited load (grid)

Tilt/Azimuth 35 / 0 °

System information

PV Array Inverters

Nb. of modules200 unitsNb. of units3 unitsPnom total100 kWpPnom total108 kWac

Pnom ratio 0.926

## Results summary

Produced Energy 136.8 MWh/year Specific production 1368 kWh/kWp/year Perf. Ratio PR 85.66 %

#### Table of contents



Variant: Test simulation (100 kW, Azerbaijan)

PVsyst V7.2.4

VC4, Simulation date: 31/07/24 11:51 with v7.2.4

## **General parameters**

**Grid-Connected System** No 3D scene defined, no shadings

**PV Field Orientation** 

Orientation **Sheds configuration** Models used

Fixed plane No 3D scene defined Transposition Perez Tilt/Azimuth 35 / 0°

Diffuse Perez, Meteonorm Circumsolar separate

Horizon **Near Shadings** User's needs

Free Horizon No Shadings Unlimited load (grid)

## **PV Array Characteristics**

PV module Inverter

Manufacturer Longi Solar Manufacturer Fronius International Model LR5-66 HPH 500 M Model CL 36.0

(Original PVsyst database) (Original PVsyst database)

Unit Nom. Power 36.0 kWac Unit Nom. Power 500 Wp Number of PV modules 200 units Number of inverters 3 unit Nominal (STC) 100 kWp Total power 108 kWac Modules 20 Strings x 10 In series Operating voltage 230-500 V Pnom ratio (DC:AC) 0.93

At operating cond. (50°C)

Pmpp 91.4 kWp 344 V U mpp 266 A I mpp

**Total PV power** Total inverter power

Nominal (STC) 100 kWp Total power 108 kWac Total 200 modules Nb. of inverters 3 units Module area 470 m<sup>2</sup> Pnom ratio 0.93

Cell area 425 m<sup>2</sup>

# **Array losses**

**Thermal Loss factor** DC wiring losses **Module Quality Loss** 

Module temperature according to irradiance Global array res.  $21~\text{m}\Omega$ Loss Fraction -0.4 % 20.0 W/m<sup>2</sup>K Loss Fraction 1.5 % at STC Uc (const)

Uv (wind) 0.0 W/m2K/m/s

Module mismatch losses **Strings Mismatch loss** 

Loss Fraction Loss Fraction 2.0 % at MPP 0.1 %

IAM loss factor

Incidence effect (IAM): User defined profile

| 0°    | 25°   | 45°   | 60°   | 65°   | 70°   | 75°   | 80°   | 90°   |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1.000 | 1.000 | 0.995 | 0.962 | 0.936 | 0.903 | 0.851 | 0.754 | 0.000 |



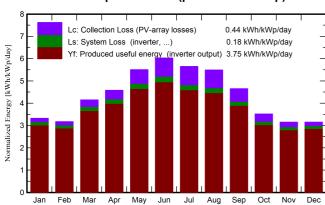
Variant: Test simulation (100 kW, Azerbaijan)

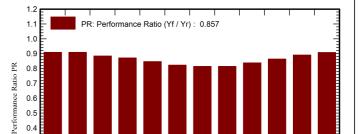
PVsyst V7.2.4

VC4, Simulation date: 31/07/24 11:51 with v7.2.4

#### Main results

## **System Production**


Produced Energy


136.8 MWh/year

Specific production Performance Ratio PR 1368 kWh/kWp/year

85.66 %

#### Normalized productions (per installed kWp)





Jul

Performance Ratio PR

# **Balances and main results**

0.3 0.2 0.1 0.0

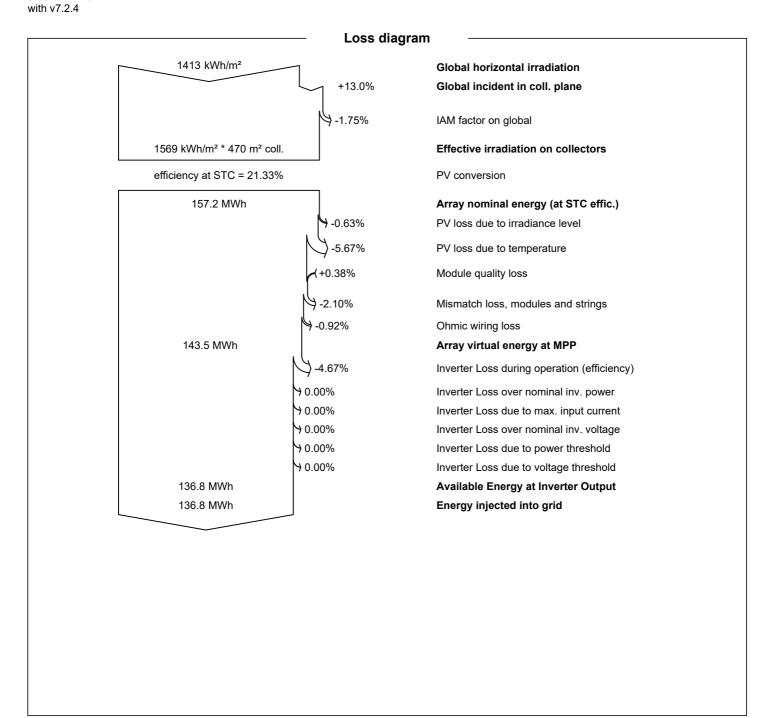
Jan

Mar

|           | GlobHor | DiffHor | T_Amb | Globinc | GlobEff | EArray | E_Grid | PR    |
|-----------|---------|---------|-------|---------|---------|--------|--------|-------|
|           | kWh/m²  | kWh/m²  | °C    | kWh/m²  | kWh/m²  | MWh    | MWh    | ratio |
| January   | 63.2    | 29.08   | 4.63  | 103.2   | 102.1   | 9.84   | 9.38   | 0.909 |
| February  | 66.3    | 39.73   | 4.80  | 88.9    | 87.6    | 8.48   | 8.08   | 0.909 |
| March     | 106.1   | 56.66   | 7.77  | 128.7   | 126.8   | 11.95  | 11.39  | 0.885 |
| April     | 130.1   | 77.01   | 11.93 | 137.5   | 135.0   | 12.58  | 11.99  | 0.872 |
| May       | 175.5   | 97.21   | 18.73 | 170.7   | 167.3   | 15.16  | 14.45  | 0.847 |
| June      | 194.2   | 96.28   | 24.05 | 181.0   | 177.1   | 15.63  | 14.90  | 0.823 |
| July      | 184.3   | 97.67   | 27.59 | 175.1   | 171.5   | 14.98  | 14.27  | 0.815 |
| August    | 165.9   | 90.61   | 27.65 | 170.2   | 167.0   | 14.55  | 13.86  | 0.814 |
| September | 123.0   | 70.99   | 22.31 | 139.6   | 137.1   | 12.27  | 11.70  | 0.838 |
| October   | 86.0    | 51.96   | 16.55 | 109.1   | 107.3   | 9.89   | 9.43   | 0.864 |
| November  | 61.8    | 33.43   | 10.64 | 94.6    | 93.3    | 8.84   | 8.43   | 0.891 |
| December  | 56.5    | 28.01   | 6.65  | 97.8    | 96.7    | 9.30   | 8.88   | 0.908 |
| Year      | 1412.8  | 768.65  | 15.34 | 1596.7  | 1568.8  | 143.47 | 136.77 | 0.857 |

#### Legends

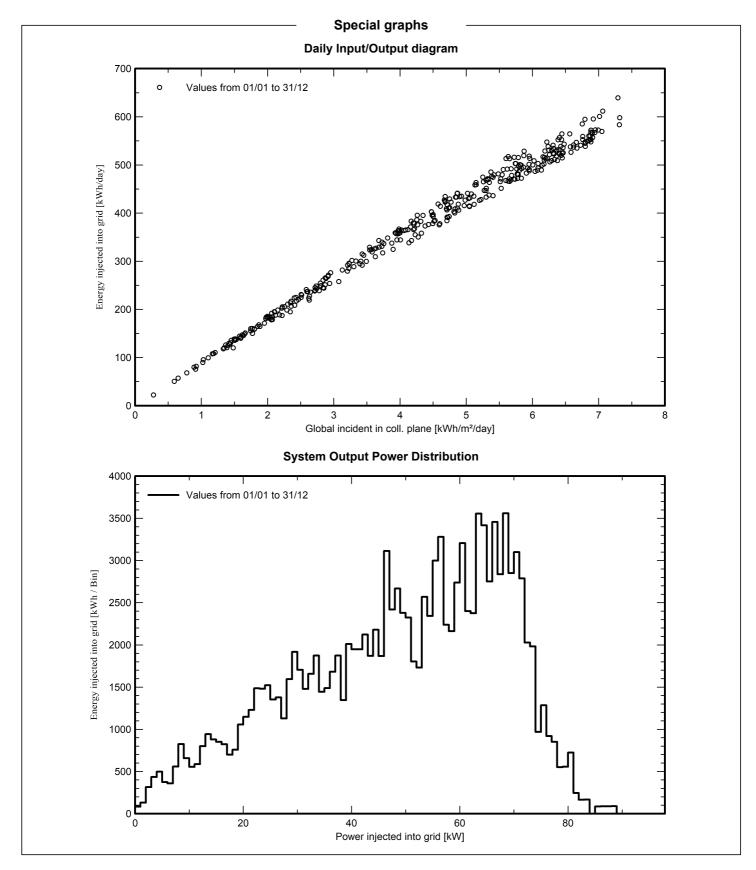
GlobHor Global horizontal irradiation EArray Effective energy at the output of the array DiffHor Horizontal diffuse irradiation E Grid Energy injected into grid


DiffHor Horizontal diffuse irradiation E\_Grid Energy injected into grid T\_Amb Ambient Temperature PR Performance Ratio

GlobInc Global incident in coll. plane
GlobEff Effective Global, corr. for IAM and shadings



Variant: Test simulation (100 kW, Azerbaijan)


VC4, Simulation date: 31/07/24 11:51





Variant: Test simulation (100 kW, Azerbaijan)

VC4, Simulation date: 31/07/24 11:51 with v7.2.4

